
CRPC

High Performance Computing Software:
Achievements and Challenges

Ken Kennedy
Center for Research on Parallel Computation

Rice University 

 1. High Performance Computing and Communications Program
 diversity of parallel architectures

 2. Challenges for Software Support
 performance, portability, usability

 3. Future Architectures and Applications
 petaflops architectures
 distributed heterogeneous computer systems
 new programming challenges

http://www.cs.rice.edu/~ken/Presentations/DoDUsersSoftware.pdf



CRPC

Status of Scalable Parallelism

• Dream
- virtually limitless computing power at low cost
- performance scalable from one to thousands of processors

 applications would be programmed to scale automatically
- easy portable programming

• Reality
- successful at only moderate levels of scalability

 state of the art: up to 32-way multiprocessor workstations
- modest progress in programmability and scalability
- usage primarily in research
- limited penetration in industry

 independent software vendors (ISVs) still reluctant
 limited protection of programming investment



CRPC

Trends in Architecture

• Ascendancy of workstation and desktop technology
- shared-memory multiprocessors
- multiprocessor personal computers

• Deeper memory hierarchies
- Petaflops: may go to 10 levels

• Distributed shared memory
- microprocessors moving to 64 bit addressing
- desire to make maximum use of previous advances in cache structure

• Clusters of workstations or PCs
- DSM and message-passing

• Heterogeneous networks
- nodes of different power, architecture, data representation
- varying network bandwidths



CRPC

Challenges for HPC Software

• Machine Independent Parallel Programming
- need for protection of programming investment

 write once and tune, single source image
- need for high performance on each target machine

 close to hand coded parallel program in native programming interface
 independent of algorithm choice

• Ease of Use
- high level of abstraction

 freeing programmer from gory details of managing complex hardware
 increasing accessibility of parallelism

• Programming Tools
- mechanisms for assisting in building, debugging and tuning parallel programs

 user control from a high-level interface
• Market Penetration

- must have a familiar environment on each commercial platform
- users must accept languages and tools



CRPC

HPC Software Successes

• Compiler Memory Hierarchy Management
- register allocation, register blocking, cache blocking, cache prefetching
- Memory reorganization for parallelism

 reduction of false sharing
• Compiler Extraction of Parallelism

- Automatic parallelization
 effective for loops on shared-memory multiprocessors

- Language and compiler support for data parallelism
 HPF available on every parallel platform

• Support for Portable Parallel Programming
- HPF, MPI, HPC++, OpenMP, Java

• Parallel Libraries
- Communication, Math, Data Structures

• Integrated Tools
- Performance Analysis and Tuning
- Debugging



CRPC

An Assessment of HPC Software Efforts

• Research
- Substantive progress in software: languages, compilers, tools

• Impact on End Users and Products
- Overall the harvest of compiler and tool technologies for scalable 
parallel computing has been meager, with few unqualified successes

 Message-passing libraries (MPI, PVM)
 Performance analysis and tuning tools

- Progress in research has not been effectively transferred to practice

• Implications
- Little support beyond MPI for machine-independence
- Limited penetration of scalable parallelism in real applications
- Divergence of programming models

 Increased reliance on multiple-language solutions



CRPC

Reasons for Limited Success

• Pace of architectural change
- shared memory, distributed memory, distributed shared memory, clusters, 
heterogeneous distributed networks

- difficult to establish a general strategy
• HPCC investment strategy counterproductive

- direct investment in software technologies inadequate
- grand challenge applications focused on performance and results at the 
expense of technology development

• Technology transfer mechanisms are flawed
- users want technologies that are mature, reliable, and standard
- software technologies are complex
- small size of high-end HPCC market

 limited corporate resources for software investment
 companies reluctant to gamble on new technologies

- early deployments of new technologies are notoriously unreliable
 users become disaffected



CRPC

Future Architectures I

• Petaflops/Petaops Architectures (year: 2007)
- Custom high-performance processors

 superconductivity, multithreading
 10,000 at 100 gigaflops

- Commercial off-the-shelf (COTS)
 100,000 at 10 gigaflops

- Processor-in-memory
 processor and memory on one chip
 1,000,000 at 1 gigaflops

• Implications
- Deep memory hierarchy

 up to 10 levels (thousands or tens of thousands of processor cycles)
- High levels of parallelism

 at least 10 million way parallelism must be found in the application
 used to exploit parallel processors and hide memory latency



CRPC

• Distributed Heterogeneous Systems
- geographically distributed high-end systems
- piles of PCs
- message passing across nodes, shared within
- nodes and links have varying power

 number and power of processors, bandwidth of links
 network bandwidth varies with load

• Implications
- Program decomposition

 load balancing
 matching function to architecture
 minimizing distant communication

- Interaction with system and network
 system allocation
 fault tolerance and migration
 quality of service

Future Architectures II



CRPC

Future Applications

• Application Complexity
- Irregular, adaptive computation
- Multidisciplinary simulation and design
- Commercial applications

 Java
- Data intensive computation

• Application Composability
- Applications will involve many programs
- MADIC study

 10,000 applications
 untrusting developers

- Language interoperability
- Application development tools



CRPC

What We Must Do

• Attack Performance Bottlenecks
- ameliorate the memory hierarchy problem

 including I/O
- find more parallelism

• Support Portable High-Performance Computing
- develop and support standards

• Raise the Level of Programming Abstraction
- abstract specification of parallelism
- problem-solving environments, scripting languages
- support for Interoperability

 multiple languages, multiple applications
• Rethink Compiler Design

- optimizations postponed until load and run time
- integration of data and run-time information into compilation
- integration of tool support
- increased reliability through component structure
- mechanisms to protect source code



CRPC

Memory Hierarchy Management: Key Ideas

• Program Reorganization
- register and cache blocking
- loop splitting

• Software Prefetching
- prefetch selection and placement

• Memory Reorganization
- variable grouping on cache lines
- array storage reorganization
- dynamic reorganization schemes

• Inclusion of I/O in Memory Hierarchy
- extension of cache techniques

 reorganization, prefetching
- improvement factors in the hundreds



CRPC

Distributed Heterogeneous Computing

• Program Decomposition
- Distributed objects
- Distributed data structures
- Adaptive distribution of standard data structures

• Scheduling
- Static and dynamic performance estimation
- System performance parameterization
- Adaptive load matching

• Latency Management
- Interaction with Quality-of-Service facilities
- Fast translation of data formats



Reusable Distributed Programs

• Goal: Separation of computation from distribution strategy
- user defines distribution explicitly in form of a library
- compiler optimizes program with distribution for target architecture

Program with 
Data Structures

Distribution 
Library Pre-optimizer

Whole-Program
Optimizing 
Compiler

Reconfigurable
Object Program



Compilation for Heterogeneous Grids

• Challenge
- dynamic, changing nature of target, difficult to manage by hand

• Solution
- A new program preparation architecture

Whole-
Program
Compiler

Libraries

P
S
E

Dynamic
Optimizer

Realtime
Performance

Monitor

Performance
Problem

Service
Negotiator

Scheduler

Grid
Runtime
System

Source
Appli-
cation

Config-
urable
Object

Program

Software
Components

Performance 
Feedback

Negotiation



Programming by the End User

• Challenges
- programming is hard
- professional programmers are in short supply
- high performance will continue to be important

• A Solution: Make the End User a Programmer
- professional programmers develop components

 languages: Java, Fortran, C++
- users integrate components using:

 problem-solving environments (PSEs)
 scripting languages (possibly graphical)

 examples: Tcl, Visual Basic, AVS, Khoros

• Compilation for High Performance
- translate scripts and components to common intermediate language
- optimize the resulting program using interprocedural methods



CRPC

Script-Based Programming System

• Compilation of all components to single intermediate code
- script, whole applications, all single-language components
- intermediate language must support parallelism and memory 

hierarchy

• Whole-system optimization of intermediate code
- interprocedural analysis
- systematic inlining

• Translation to high-performance parallel programs
- standard intermediate code + communication

• Compilation to native machines
- portable or native compilers



CRPC

Script-Based Programming System

Script

Intermediate 
Code 

Target 
Machine 1

Target 
Machine 2

Target 
Machine 3

Portable IC 
Compiler

Translation 
System

Whole-System 
Compiler

Native IC 
Compiler

Program 
Component

Program 
Component



CRPC

Compilation with Data

Program

Frequently 
Changing 

Data

Rarely 
Changing 

Data

Extended 
Optimizing 
Compiler

Object 
Program Answers



CRPC

New Compiler Architecture

• Flexible Definition of Computation
- Parameters

 program scheme
 subprogram source files (s1, s2, ..., sn)
 run history (r1, r2, ..., rk)
 data sets (d1, d2, ..., dm) 
 target configuration

• Compilation = Partial Evaluation
- may be several compilation steps

 information available at different times

• Program Management
- Must decide when to back out of previous compilation decisions in 

response to change
- Must decide when to invalidate certain inputs

 previous run histories



CRPC

New Technology Program Environments

Program 
Definition

Input Data 
Definition Run History

Source Files Data and 
Trace Files

Machine Code

Whole- 
Program 
Compiler



CRPC

The Role of Tools

User

Compiler
Debugging and
Analysis Tool

Target Machine

Source

Compiled 
Code

Execution 
Record

Execution Record 
Keyed to Source

Info about 
Transformations



CRPC

Composition of Tools

User

HL Compiler HL Debugger

Target Machine

Source Execution Record Virtual Machine

LL Compiler LL Debugger

Compile Info

Compile Info



CRPC

Challenges for Compilation Research

• Complex Architectures
- more parallelism
- deeper memory hierarchies
- heterogeneous distributed systems

 late binding of actual machine configuration

• Complex Applications
- irregular, adaptive, dynamic computations
- multiple programs, multiple languages, multiple parallelism styles
- script-based system compositions

• What We Must Do
- Attack performance bottlenecks
- Support portable high-performance computing
- Raise the level of programming abstraction
- Rethink compiler design

 support for performance, multilevel compilation, reliability, security


